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Abstract. We present an Anderson-type model Hamiltonian with exchange coupling between the local-
ized spins and the confined holes in the quantum dots to study the ferromagnetism in diluted magnetic
semiconductor (DMS) quantum dot arrays embedded in semiconductors. The hybridization between the
quantum-confined holes in the quantum dots and the itinerant holes in the semiconductor valence band
makes possible hole transfer between the DMS quantum dots, which can induce the long range ferromag-
netic order of the localized spins. In addition, it makes the carrier spins both in the quantum dots and in
the semiconductors polarized. The spontaneous magnetization of the localized spins and the spin polar-
ization of the holes are calculated using both the Weiss mean field approximation and the self-consistent
spin wave approximation, which are developed for the present model.

PACS. 75.75.+a Magnetic properties of nanostructures – 75.30.Ds Spin waves – 75.50.Dd Nonmetallic
ferromagnetic materials – 75.50.Pp Magnetic semiconductors

1 Introduction

Diluted magnetic semiconductors (DMS) and a variety of
quantum nanostructures based on DMS materials have
recently attracted much interest due to the novel physics
and the potential application to the emergent field of spin-
tronics [1]. The discovery of ferromagnetism in the III-V
based DMS materials Ga1−xMnxAs and In1−xMnxAs has
made it possible to combine the magnetic and semicon-
ducting properties in one material [2]. At relatively high
concentration of randomly distributed Mn2+ ions doped in
GaAs samples with high hole density, Ga1−xMnxAs com-
pounds exhibit ferromagnetism with a transition temper-
ature as high as 110 K at certain values of x. The ferro-
magnetism in the localized spins of impurity Mn ions is
mediated by the itinerant holes through the p-d exchange
coupling between the valance-band holes and the localized
spins [2–5]. Bhatt et al. argues that for low carrier densi-
ties and in the strong disorder limit, the ferromagnetism
is mediated by the carriers in impurity bands [5]. Recently
the room temperature ferromagnetism was reported in the
Mn-doped magnetic semiconductors (Ga,Mn)N [6], which
also belong to the III-V family.

As one of the interesting quantum structures made of
the DMS materials, self-organized (In, Mn)As quantum
dots were successfully fabricated by growing (In, Mn)As
on the (100), (211)B, (311)B GaAs substrates using low-
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temperature molecular beam epitaxy, which were subse-
quently capped by the GaAs layer [7]. The electron diffrac-
tion pattern and the atomic force microscopy measure-
ments confirmed the formation of the (In,Mn)As quantum
dots. The more detailed experiments afterwards revealed
that the majority of the Mn atoms were actually substi-
tuted in the In-site in (In,Mn)As quantum dots shown by
the fluorescence extended X-ray absorption fine structure
analysis [8]. In their samples [7,8], the (In,Mn)As quantum
dots were irregularly placed and embedded in the GaAs.
The major challenge experimentally is to fabricate uni-
form and regular array of DMS quantum dots and to ex-
plore the various physical properties of these systems. The
interplay between the quantum-confined magnetic dots
and the non-magnetic semiconductors is very interesting,
which has a possible application as a tool to implement
quantum bits, a large-scale quantum computer [9,10], and
other quantum devices.

In this paper, we theoretically study the ferromag-
netism in diluted magnetic semiconductor quantum dot
arrays embedded in semiconductors. In contrast to the
bulk ferromagnetic semiconductors, we suggest that the
following two processes lead to the ferromagnetism in the
present systems: (1) the localized spins of Mn2+ inter-
act with the quantum-confined holes in the dots through
exchange coupling, and (2) the localized orbital of the
quantum-confined holes in the dots hybridizes with the
itinerant holes in the semiconductor valence band. The
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hybridization allows hole transfer between the DMS quan-
tum dots, which may induce the long range ferromagnetic
order of the localized spins. In turn, the carrier spins both
in the quantum dots and in the semiconductors are po-
larized, which is crucial to realize spintronics. In order to
describe the basic physics, we propose an Anderson-like
model Hamiltonian, where the onsite Coulomb interac-
tion is replaced by the exchange interaction. Our results
provide a basis for the experiments to explore the ferro-
magnetic properties of these systems.

The paper is organized as follows. In Section 2, an
Anderson-type model Hamiltonian is introduced to de-
scribe the DMS quantum dot arrays embedded in semi-
conductors. We use the Weiss mean field approximation
and the self-consistent spin wave approximation, which are
modified for the present model. In Section 3, we show the
numerical results of the temperature dependence of var-
ious physical quantities: the spontaneous magnetization
of the local spins and the spin polarizations of the carri-
ers both in the quantum dots and in the semiconductor.
Finally we conclude with a brief summary in Section 4.

2 Theoretical model and self-consistent
approximation

We consider the regular arrays of DMS quantum dots with
the simple cubic structure embedded in the semiconductor
such as (Ga,Mn)As or (In,Mn)As quantum dots in the
GaAs Layer. The model Hamiltonian of the system can
be written by

H =
∑
kσ

(εk − µ)c†kσckσ

+
∑
iσ

(εd − µ)d†iσdiσ + J
∑

i

Si · si

+
∑
ijσ

V δ(Ri − rj)(c
†
jσdiσ + h.c.). (1)

Here ckσ and diσ are the fermion operators for the car-
riers in the semiconductor and in the quantum dots, re-
spectively. For simplicity, we use the parabolic band for
the carriers in the semiconductor εk = �k2/(2m∗) with
the effective mass m∗. εd is the discrete energy level of
the carriers within the quantum dots, and µ is the chem-
ical potential. The exchange coupling between the con-
fined holes and Mn2+ ion impurity spins is special for the
DMS quantum dot system and J stands for the exchange
coupling strength. Through the use of advanced nanofab-
rication technology [11], the amount of the Mn impurity
within a quantum dot can be precisely controlled by ad-
justing the dot size and the Mn concentration. In addition,
in the available experiments the Mn concentration is dilute
in III-V and II-VI magnetic semiconductors. Therefore we
consider a system whereby there is no more than one Mn
impurity per dot, which can be realized and fabricated in
experiments. It then follows that we define the local spin
Si in ith site quantum dot at position Ri in the Hamilto-
nian (1) as Si =

∑
RI

SIδRI ,Ri , where RI is the position

of the quantum dot with a Mn ion impurity, and SI is the
localized spin of the Mn ion impurity. The si represents the
spin of the confined holes at the ith site of quantum dot,
which can be written as 1

2

∑
σσ′ d†iστσσ′diσ′ , where τ are

the three Pauli spin matrices. The last term in the Hamil-
tonian (1) takes into account the hybridization between
the holes confined in the quantum dots and the itiner-
ant holes in the semiconductor valence band. The present
Hamiltonian (1) is quite similar to that of the periodic
Anderson model for the heavy fermion compounds [12]
with the onsite screened Coulomb interaction. Here the
onsite interaction is replaced by the exchange coupling
between the local spin and the hole confined in quantum
dots.

In the following, we focus our attention on the ferro-
magnetic ground state of the present system. Performing
the coarse graining procedures [4] and using the Holstein-
Primakoff transformations [13], the local spin Si can be
written in terms of the bosonic operators a†

i , ai as follows

Sz
i = cS − a†

iai, (2)

S+
i =

√
2cS − a†

iai ai, (3)

S−
i = a†

i

√
2cS − a†

iai, (4)

where c is the mean number of the magnetic ions Mn2+

in the quantum dots, which is defined by the ratio be-
tween the total number of the magnetic ions Mn2+ and
the number of quantum dots in the system. Further the

approximation
√

2cS − a†
iai � √

2cS is applied to equa-
tions (3, 4).

By transforming from the lattice space to the momen-
tum space and limiting the involved momentum of the
carriers in the semiconductor valence band within the first
Brillouin zone of the corresponding quantum dot arrays,
the Hamiltonian can be rewritten as follows,

H =
∑
kσ

(εk − µ)c†kσckσ +
∑
kσ

(εdσ − µ)d†kσdkσ

+
∑
kσ

Veff

(
c†kσdkσ + h.c.

)

+
J

2

√
2cS√
M

∑
qk

(
a†
qd†k↑dk+q↓ + aqd†k+q↓dk↑

)

− J

2M

∑
kq1q2σ

σa†
q1

aq2d
†
k−q1σdk−q2σ, (5)

where εdσ = εd + ∆
2 σ with ∆ = JcS, Veff = V

√
a3/b3,

b is the lattice constant of the quantum dot arrays, a the
effective radius of hybridization, and M the total number
of dot sites. The summations of q, q1, and q2 in the last
two terms in the Hamiltonian (5) are restricted to the
values less than the Debye cutoff qc for the spin waves of
the local spins with the relation q3

c = 6π2c/b3.
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In the functional integral representation, the partition
function Z for the Hamiltonian (5) is given by

Z =
∫

D[c†c]D[d†d]D[a†a]e−
∫

β
0 dτL(c†c,d†d,a†a), (6)

where the Lagrangian L can be written as

L =
∑
kσ

(
c†kσ∂τckσ + d†kσ∂τdkσ

)
+

∑
q

a†
q∂τaq

+ H
(
c†c, d†d, a†a

)
. (7)

Here the fermionic and bosonic degrees of freedom are
represented by the Grassmann variables and the complex
variables, respectively.

The itinerant carrier degrees of freedom in the semi-
conductor valence band can be integrated out easily, and
we have

Z = Zs

∫
D[d†d]D[a†a]e−

∫
β
0 dτL(d†d,a†a), (8)

where Zs is the partition function for the free carriers
in the semiconductor valence band, and L[d†d, a†a] is
given by

L =
∑
kσ

d†kσ

[
∂τ − µ + εdσ − V 2

eff(∂τ − µ + εk)−1
]
dkσ

+
∑
q

a†
q∂τaq +

J

2

√
2cS√
M

∑
qk

(
a†
qd†k↑dk+q↓

+ aqd†k+q↓dk↑
)
− J

2M

∑
kq1q2σ

σa†
q1

aq2d
†
k−q1σdk−q2σ,

(9)

where (∂τ − µ + εkσ)−1 is the Green’s function of the
itinerant carriers in the semiconductor valence band.

By subsequently integrating out the remaining carrier
degrees of freedom in the quantum dots, we finally obtain
the following partition function

Z = Zs

∫
D[a†a]e−Seff , (10)

where the effective action is given by

Seff =
∫ β

0

dτ
∑
q

a†
q∂τaq−Trln(Gd)−1−Trln(1+GdδG−1).

(11)
The mean-field part (Gd)−1 is written by

(Gd)−1 = [∂τ −µ+εd−V 2
eff(∂τ −µ+εk)−1]1+

∆

2
τz , (12)

and the fluctuation part δG−1 is given by

〈k|δG−1|k′〉 =
J

2

√
2cS√
M

(
a†
k′−k

τ+

2
+ ak−k′

τ−

2

)

− J

2M

∑
q

a†
q−kaq−k′τz . (13)

Hence the exchange coupling and the hybridization of the
carriers induce the effective non-local interaction between
the local spins.

Expanding equation (11) to the quadratic order in a†
and a, we obtain

Seff =
1
β

∑
qiνm

a†
q(iνm)D−1(q, iνm)aq(iνm), (14)

where the inverse of the spin wave propagator is given by

D−1(q, iνm) = −iνm +
J

2βM

∑
kσiωn

σGd
σ(k, iωn)eiωn0+

+
J∆

2βM

∑
kiωn

Gd
↑(k, iωn)

×Gd
↓(k + q, iωn + iνm), (15)

and the Green function Gd
σ(k, iωn) is written by

Gd
σ(k, iωn) =

−1
iωn − (εdσ − µ) − V 2

eff/[iωn − (εk − µ)]
.

(16)
The spin wave dispersion is obtained by the following

analytic continuation iνm → Ω + i0+, which is given by

Ωq =
J

2βM

∑
kσiωn

σGd
σ(k, iωn)eiωn0+

+
J∆

2βM

×
∑
kiωn

Gd
↑(k, iωn)Gd

↓(k + q, iωn + Ωq). (17)

After the Matsubara frequency summation, the spin wave
dispersion can be derived as follows

Ωq = − J

2M

∑
kσα

σAα
kσf(εα

kσ) − J∆λ(q)
2M

×
∑
kα

[
Aα

k↑A
α
k+q↓

f(εα
k+q↓) − f(εα

k↑)
Ωq + εα

k↑ − εα
k+q↓

+Aα
k↑A

−α
k+q↓

f(ε−α
k+q↓) − f(εα

k↑)

Ωq + εα
k↑ − ε−α

k+q↓

]
, (18)

with A+
kσ and A−

kσ are given by

A+
kσ =

ε+
kσ − εk + µ

ε+
kσ − ε−kσ

, (19)

and

A−
kσ =

εk − µ − ε−kσ

ε+
kσ − ε−kσ

, (20)

where the lower band energy is ε−kσ = 1
2 (εdσ + εk) −

1
2

√
(εdσ − εk)2 + 4V 2

eff − µ and the upper band ε+
kσ =

1
2 (εdσ + εk) + 1

2

√
(εdσ − εk)2 + 4V 2

eff − µ. The index α
represents + or − for upper and lower hybridization
bands, respectively and f(x) is the Fermi-Dirac distri-
bution function. If the last summation terms in equa-
tion (18) are ignored, we obtain the Weiss mean field
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approximation with the Weiss mean field given by Ω =
−J/(2M)

∑
kσα σAα

kσf(εα
kσ), which is proportional to the

spin polarization of the carriers in the quantum dots.
Here λ(q) is introduced as a phenomenological renor-
malization factor in the last summation terms in equa-
tion (18), which effectively takes into account the higher
order corrections in the fluctuations in Sx and Sy: λ(q) =
λ0 + (1 − λ0) tanh2(q/qc). Since the Hamiltonian of the
system is spin rotationally invariant and the ground state
possesses a spontaneously broken symmetry, the system
has a gapless Goldstone mode [13]. The parameter λ0

can be determined by imposing the following condition
that Ωq = 0 as q goes to zero. At large values of q,
the renormalizations in the fluctuation term are negligible
and so λ(q) approaches to one. It appeared that for bulk
ferromagnetic semiconductors, no gap arises in the self-
consistent spin wave approximation, which we believe is
crucial to produce quantitatively reliable results [4]. Hence
the modification of the above approximation by putting
in the renormalization factor λ(q) can be very important
for the present system.

At finite temperatures, the spin wave dispersion can
be generalized by imposing the following self-consistency
conditions for the finite temperature exchange gap ∆(T )
given by ∆(T ) = Jpd〈Sz〉. Here 〈Sz〉 represents the ther-
mal average of the local spins in the DMS quantum dot
arrays, which are approximately calculated by the follow-
ing formula [4]

〈Sz〉 =
1
M

∑
|q|<qc

SBs(βSΩq)

=
1
M

∑
|q|<qc

{
S − nB(Ωq)

+(2S + 1)nB[(2S + 1)Ωq]
}
, (21)

where Bs(x) is the Brillouin function and nB(x) the
Bose-Einstein distribution function. The second term in
the second equality of equation (21) describes how the
thermally induced spin waves from the independent Bose
statistics with no limit in the number of spin waves reduce
the magnetization of the system. The third term takes into
account the correct spin kinematics, which rules out the
unphysical states. When Ωq is independent of q, for ex-
ample, the Weiss mean field approximation, equation (21)
is reduced to the widely used formula 〈Sz〉 = cSBs(βSΩ).

On the other hand, using the Hamiltonian (5) with-
out the exchange coupling, one can integrate out the car-
rier degrees of freedom in the quantum dots to obtain
the Green’s function for the semiconductor carriers, where
the role of the hybridization is taken into account. It is
given by

Gs
σ(k, iωn) =

−1
iωn − (εk − µ) − V 2

eff/[iωn − (εdσ − µ)]
.

(22)

The densities of the carriers in the semiconductors and in
the quantum dots can be calculated from

ns
σ =

1
πV

∑
k

∫ ∞

−∞
dωf(ω)ImGs

σ(k, ω + i0+), (23)

nd
σ =

1
πV

∑
k

∫ ∞

−∞
dωf(ω)ImGd

σ(k, ω + i0+), (24)

where V is the volume of the system. The total carrier
density is given by ntot =

∑
σ(ns

σ + nd
σ), which is fixed

and determines the Fermi energy.
The spin polarization of the carriers is defined as Ps =

(ns
↓ −ns

↑)/(ns
↓ +ns

↑) in the semiconductor and Pd = (nd
↓ −

nd
↑)/(nd

↓ +nd
↑) in the quantum dots. This definition of spin

polarizations is different from those commonly used in the
transport properties, which is defined as the corresponding
density of states at the Fermi energy [14].

Based on the above framework, one can calculate the
spontaneous magnetization of the local spins in the DMS
quantum dot arrays and the spin polarizations of the car-
riers both in the quantum dots and in the semiconductor
by solving the set of coupled equations in the Weiss mean
field approximation and self-consistent spin wave approx-
imations as well.

3 Results and discussions

We have chosen the typical material parameters [2] of
the bulk (Ga,Mn)As for the DMS quantum dots, i.e.
J = 0.15 eV, m∗ = 0.5me. The lattice distance b of the
quantum dots is set to be b = 1.0 nm, which is within the
spin-coherence length in semiconductor GaAs [15]. The
carrier bands consist of the upper ε+

kσ and lower ε−kσ bands
due to the hybridization between the discrete energy level
of quantum dot and the semiconductor valence band. The
spin dependence of the upper and lower bands originates
from the exchange coupling in the DMS quantum dots.
Also there exists a gap between the spin-up (spin-down)
upper and lower bands. When the ground state is metallic
or semiconducting, the Fermi level must lie in the spin-
down lower band.

In the following we calculate the ferromagnetic prop-
erties of the present system both in the Weiss mean field
approximation and in the self-consistent spin wave approx-
imation, respectively.

In Figures 1 and 2, we plot the temperature depen-
dence of the spin polarizations of the carriers in the semi-
conductor and in the quantum dots, and the spontaneous
magnetization for the DMS quantum dot arrays in the
Weiss mean field theory with the following material pa-
rameters c∗ = 0.1 nm−3, c = 1.0, Veff = 0.30 eV, and
εd = 0.46 eV. The critical temperature Tc for spontaneous
magnetization and spin polarization is about 55 K. One
can notice that the spin polarizations Pd and Ps decrease
more stiffly than the spontaneous magnetization 〈Sz〉 of
the local spins. The Tc presumably increases as one tunes
the exchange coupling strength J and the hybridization
Veff to higher values.
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Fig. 1. Spin polarization of the carriers in quantum dots (Pd)
and in semiconductors (Ps) in Weiss mean field theory with
the following parameters J = 0.15 eV, m∗ = 0.5me, c∗ =
0.1 nm−3, c = 1.0, b = 1.0 nm, Veff = 0.30 eV, and εd =
0.46 eV.
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Fig. 2. Spontaneous magnetization of the local spins in DMS
quantum dot arrays in the Weiss mean field theory with the
same parameters used in Figure 1.
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Fig. 3. Renormalized spin wave dispersion at 4.2 K in the self-
consistent spin wave approximation with the same parameters
used in Figure 1.

Next we go beyond the standard Weiss mean field the-
ory. In Figure 3, we have shown the renormalized spin
wave dispersion curve at T = 4.2 K based on the self-
consistent spin wave approximation. The material param-
eters are the same as those used in the Weiss mean field
calculation. The spin wave frequencies are less than the
Weiss mean-field value Ω � 4.14 meV. As q goes to zero,
Ωq ∝ q2, which are correct for ferromagnetic spin wave
dispersion. As q becomes very large, Ωq approaches the
mean field value. Figures 4 and 5 illustrate the tempera-
ture dependence of the spin polarizations of the carriers
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Fig. 4. Spin polarization of the carriers in quantum dots (Pd)
and in semiconductors (Ps) in the self-consistent spin wave
approximation with the same parameters used in Figure 1.
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Fig. 5. Spontaneous magnetization of the local spins in DMS
quantum dot arrays in the self-consistent spin wave approxi-
mation with the same parameters used in Figure 1.

in the semiconductor and in the quantum dots, and the
spontaneous magnetization for the DMS quantum dot ar-
rays in the self-consistent spin wave approximation with
the same material parameters as before. The magnetiza-
tion and the spin polarizations in the self-consistent spin
wave approximations drop much more rapidly compared
to those in the Weiss mean field approximation due to the
strong spin fluctuations. The Tc drops to about 22 K less
than half of the mean field value of Tc, which also hap-
pens in the bulk ferromagnetic semiconductors [4]. The
qualitative behaviors remain the same as the mean field
results.

Figure 6 shows the dependence of the critical temper-
ature Tc as a function of the discrete energy level εd of
quantum dot. The Tc increases with the decrease of εd.
As εd decreases, the carriers in the semiconductor eas-
ily hop to the localized levels and vice versa, which sub-
sequently enhances the ferromagnetic coupling between
the local spins. The monotonic dependence of Tc on εd

is only correct in the low carrier density region, in which
our model is suitable, that is, the Fermi energy level lying
in the spin-down lower band. In the low carrier density
limit, the Fermi energy level always lies below εd↓. Obvi-
ously the enhancement of the hybridization strength be-
tween the quantum-confined carriers in quantum dots and
the itinerant carriers in the semiconductor makes carrier
transfer easier leading to the increase of Tc.
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Fig. 6. Transition temperature Tc versus discrete energy level
εd in the self-consistent spin wave approximation with the fol-
lowing parameters J = 0.15 eV, m∗ = 0.5me, c∗ = 0.1 nm−3,
c = 1.0, b = 1.0 nm, and Veff = 0.30 eV.

4 Summary

We have theoretically studied the origin of the ferro-
magnetism in diluted magnetic semiconductor quantum
dot arrays embedded in semiconductors based on an
Anderson-type model Hamiltonian. The hybridization be-
tween the quantum-confined holes in the quantum dots
and the itinerant holes in the semiconductor valence band
allows the hole transfer between the DMS quantum dots,
which induces the long range ferromagnetic order of the
local spins in the DMS quantum dot arrays through the
exchange coupling. Currently the available DMS quan-
tum dot systems have irregular nanostructures, and the
uniform and regular arrays of DMS quantum dots are ex-
pected in experiments. Our results provide a basis for ex-
ploring the magnetic properties of these systems.
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